Taxonomy / Definitions and Rules for Classification

1. Definitions and rules for classification of L1 to L4

1.1 L1: Definitions of 29 items

Table 1 shows the 29 items at Level 1 (L1) specified on the basis of the characteristics of the chemical structure contained in each polymer repeating unit.

Table 1: 29 items classified based on the characteristics of the chemical structural formula of the functional group in each polymer repeating unit

	\quad (L1)29 items
1	acrylic polymers
2	Polyamides
3	Polyanhydrides
4	Polycarbonates
5	Polydienes
6	metal containing polymers
7	Polyesters
8	Polyethers
9	halogenated polymers
10	inorganic polymers
11	Polyimides
12	Polyimines
13	Polyketones
14	Polyolefins
15	Polyphenylenes
16	poly(phosphine oxide)/ polythiophosphines
17	Polystyrenes
18	polysulfides/polysulfones/polysulfoxides
19	polysulfates/polysulfonates
20	Polysulfonamides
21	polythioketones/polythioesters/polythiocarbonates
22	Polythioamides
23	polythioureas/polythiourethanes
24	Polythioanhydrides
25	Polythioimides
26	polyureas/polyurethanes
27	vinyl polymers
28	condensed-ring aromatic polymers
29	Other polymers

1) For each of Items 1 to 28 at L1, polymers are grouped together as one item when the chemical structure of the functional group falls under any of the following cases in which:
(a) The whole chemical structure forms the backbone;
(b) and (c) The chemical structure of the functional group forms part of the ring; or
(d) Part of the chemical structure substitutes for other atoms (a and b).

(a)

(b)

(c)

(d)
2) Polymers unassignable at L1 to Items 1 to 28 are assigned to "other polymers."
3) When multiple classification items apply to the chemical structure of the repeating unit of a polymer, the polymer is classified accordingly. In other words, a single polymer may be classified into multiple items.
4) Some polymers having multiple functional groups may not be included in a classification item specified for polymers having only one of these functional groups.

For example,
Poly(adamantane) PID:P310013 is assignable to Item 14 "Polyolefins." Meanwhile,

PID:P100055 CU formula: C 18 H 28 N 2 O 2

is unassignable to polyolefins because of the definition of olefins, which states that an olefin consists only of a saturated aliphatic hydrocarbon group. This polymer is classified only into Item 2 "Polyamides."

1.2 Definition contents of the Items at L2

1) Item 1 "acrylic polymers" are classified as aliphatic, aromatic, or heterocyclic, based on the type of the functional group bonded to the acryloyl group (-CH2-CH2-C(=)-).
2) Item 27 "vinyl polymers" are classified as aliphatic, aromatic, or heterocyclic, based on the type of the functional group of the side chain bonded to the vinylene group $(-\mathrm{CH} 2-\mathrm{C}(-) \mathrm{H}-)$.
3) The classification of Item 6 "metal-containing polymers," Item 9 "halogenated polymers", Item 10 "inorganic polymers," Item 15 "polyphenylenes," and Item 17 "polystyrenes"
completes at L2.
4) Except those in 1), 2), and 3), Items 2 to 5,7 and 8,11 to $13,15,16,18$ to 26 , and 28 at L1 are classified as aliphatic, aromatic, or heterocyclic, based on the structure of the functional group constituting the backbone.

(Supplementary note)

Some polymers may be split into different classification items having a common component, depending on the arrangement of the atoms bonded to their backbone.
Example

1.3 L3: Classification of the side chains in the repeating unit

1) For the items other than polydienes and polyolefins, their side chains are classified into the four items (unmodified, aliphatic, aromatic, and heterocyclic).
i) Unmodified: The repeating unit consists only of the backbone. Same in meaning as at L2.
ii) Aliphatic: All side chains containing no cyclic structures are deemed aliphatic. In other words, side chains consisting only of H, OH, halogen, or heteroatoms are also deemed as aliphatic. Note that D is handled equivalently to H .
iii) Aromatic: Side chains that contain benzene rings, condensed polycyclic rings containing at least one benzene ring or azulene ring (with seven- and five-membered rings condensed together).
(Supplementary note) Ferrocenes have aromaticity and hence are assigned to aromatic. They are classified at L4 as multi-ring aromatic.
iv) Heterocyclic: Ring compounds containing heteroatoms.
2) Polydienes and polyolefins are classified based on the presence or absence of side chains. Their classification completes at L3.

1.4 Classification at L4

The three items of Aliphatic, Aromatic, and Heterocyclic specified at L3 are subdivided further into the following:
acyclic aliphatic
alicyclic aliphatic
condensed-ring aromatic
multiring aromatic
single-ring aromatic
saturated heterocyclic
unsaturated heterocyclic
Here, the multiring aromatic and single-ring aromatic items correspond to the number of benzene rings contained in their respective side chain.

Assigned to single-ring aromatic if the functional group contained in the backbone has two side chains, each containing one benzene ring.

| The phenylene group contained in the backbone has two phenyl |
| :--- | :--- |
| groups, one per each side chain, and hence is assigned to single-ring |$|$| aromatic. |
| :--- |

(Supplementary note)

For net polymers with their repeating-unit backbones bonded to each other via a common side chain, the whole side chains bonded to the respective backbones were considered for classification.

| | |
| :--- | :--- | :--- |

2. Definitions and rules for classification of the 29 items at L1

The alphabetic letters in the \square represent classification IDs.

2.1 Acrylic polymers

Definition: Polymers in which the backbone consists of a straight-chain saturated aliphatic hydrocarbon group and at least one of the following groups is bonded directly to a backbone carbon:

- Polyacrylics may be characterized by two or more groups.
- Polymers classified into polyacrylics are also classified into vinyl polymers at the same time.
- Classified at L3 as "aliphatic" and assigned at L4 to "ACR (_,N,S,CN)41," if hydrogen is bonded to the $-\mathrm{C}(=\mathrm{O})-(\mathrm{N}, \mathrm{O}, \mathrm{S})-$ in the side chain. In the conventional classification method, -COOH is classified only as vinyl.
- Not assigned to acrylic, even with the above chemical structural formula partially included, if the backbone contains double bonds, heteroatoms, or benzene rings.
- Not assigned to acrylic if halogen is contained as part of the vinyl group of the backbone.
- Only functional groups bonded to the $-\mathrm{C}(=\mathrm{O})-(\mathrm{N}, \mathrm{O}, \mathrm{S})-$ of the acryloyl group are considered for classification. Functional groups, such as methyl groups bonded to the vinyl group of the backbone, are assigned only to VNL_41.
(Supplementary note) Exceptional rule for ACRN items

Assigned to $_41$ if N is contained as part of the cyclic structure in the chemical structural formula to the left.

Table 2.1: Classification items for acrylic polymers

No	L1	L2		L3		L4)		ID
		unmodified	ACR_2	aliphatic	ACR_31	acyclic aliphatic	ACR_41	ACR_41
						alicyclic aliphatic	ACR_42	ACR_42
				aromatic	ACR_32	condensed-ring aromatic	ACR_43	ACR_43
						multiring aromatic	ACR_44	ACR_44
						single-ring aromatic	ACR_45	ACR_45
				heterocyclic	ACR_33	saturated heterocyclic	ACR_46	ACR_46
						unsaturated heterocyclic	ACR_47	ACR_47
		N-substituted	ACRN2	aliphatic	ACRN31	acyclic aliphatic	ACRN41	ACRN41
						alicyclic aliphatic	ACRN42	ACRN42
				aromatic	ACRN32	condensed-ring aromatic	ACRN43	ACRN43
						multiring aromatic	ACRN44	ACRN44
						single-ring aromatic	ACRN45	ACRN45
				heterocyclic	ACRN33	saturated heterocyclic	ACRN46	ACRN46
	acrylic polymers					unsaturated heterocyclic	ACRN47	ACRN47
	ACR1	S-substituted		aliphatic	ACRS31	acyclic aliphatic	ACRS41	ACRS41
						alicyclic aliphatic	ACRS42	ACRS42
				aromatic	ACRS32	condensed-ring aromatic	ACRS43	ACRS43
			ACRS2			multiring aromatic	ACRS44	ACRS44
						single-ring aromatic	ACRS45	ACRS45
				heterocyclic	ACRS33	saturated heterocyclic	ACRS46	ACRS46
						unsaturated heterocyclic	ACRS47	ACRS47
		CN-substituted	ACRCN2	unmodified	ACRCN30			ACRCN30
				aliphatic	ACRCN31	acyclic aliphatic	ACRCN4	1ACRCN41
						alicyclic aliphatic	ACRCN4	$2 \mathrm{CRCN42}$
				aromatic	ACRCN32	condensed-ring aromatic	ACRCN4	$34 \mathrm{CRCN43}$
						multiring aromatic	ACRCN4	$4 \mathrm{CRCN4}$
						single-ring aromatic	ACRCN4	54CRCN45
				heterocyclic	ACRCN33	saturated heterocyclic	ACRCN4	(ACRCN46
						unsaturated heterocyclic	ACRCN4	$7 \mathrm{ACRCN47}$

Note: The " 30 " in the last two digits of the classification ID means that the polymer has no side chain. The same applies to the tables that follow.

2.2 Polyamides

Definition: Polymers whose backbone contains a partial structure, such as the following:

0
AMD_
AMDH
AMDT

However, excluded are cases where any of these partial structures is contained in an atomic group characterizing any of the following polymer systems:
Polyurethanes: $>\mathrm{N}-\mathrm{CO}-$ and the like in $>\mathrm{N}-\mathrm{CO}-\mathrm{O}-$
Polyureas: >N-CO- and the like in $>\mathrm{N}-\mathrm{CO}-\mathrm{N}<$
Polyimides: $>\mathrm{N}-\mathrm{CO}-$ and the like in $-\mathrm{CO}-\mathrm{N}-\mathrm{CO}-$

ANH
ANHH

Table 2.2: Classification items for polyamides

No	L1	L2		L3		L4)		ID
2	polyamides AMD1	unmodified linear	AMD_2	unmodified	AMD_30			AMD_30
				aliphatic	AMD_31	acyclic aliphatic	$\begin{aligned} & \text { AMD_4 } \\ & 1 \\ & \hline \end{aligned}$	AMD_41
						alicyclic aliphatic	$\begin{aligned} & \text { AMD_4 } \\ & 2 \\ & \hline \end{aligned}$	AMD_42
				aromatic	AMD_32	condensed-ring aromatic	$\begin{aligned} & \text { AMD_4 } \\ & 3 \end{aligned}$	AMD_43
						multiring aromatic	$\begin{aligned} & \text { AMD_4 } \\ & 4 \end{aligned}$	AMD_44
						single-ring aromatic	$\begin{aligned} & \text { AMD_4 } \\ & 5 \end{aligned}$	AMD_45
				heterocyclic	AMD_33	saturated heterocyclic	$\begin{aligned} & \text { AMD_4 } \\ & 6 \end{aligned}$	AMD_46
						unsaturated heterocyclic	$\begin{array}{\|l} \text { AMD_4 } \\ 7 \\ \hline \end{array}$	AMD_47
		heterocyclic	$\begin{aligned} & \text { AMDH } \\ & 2 \end{aligned}$	unmodified	AMDH30			AMDH30
				aliphatic	AMDH31	acyclic aliphatic	AMDH4 1	AMDH41
						alicyclic aliphatic	$\begin{aligned} & \text { AMDH4 } \\ & 2 \end{aligned}$	AMDH42
				aromatic	AMDH32	condensed-ring aromatic	AMDH4 3	AMDH43
						multiring aromatic	$\begin{array}{\|l} \text { AMDH4 } \\ 4 \\ \hline \end{array}$	AMDH44
						single-ring aromatic	AMDH4 5	AMDH45
				heterocyclic	AMDH33	saturated heterocyclic	AMDH4 6	AMDH46
						unsaturated heterocyclic	AMDH4 7	AMDH47
		partially heterocyclic	AMDT2	unmodified	AMDT30			AMDT30
				aliphatic	AMDT31	acyclic aliphatic	AMDT4 1	AMDT41
						alicyclic aliphatic	AMDT4 2	AMDT42
				aromatic	AMDT32	condensed-ring aromatic	AMDT4 3	AMDT43
						multiring aromatic	$\begin{aligned} & \text { AMDT4 } \\ & 4 \end{aligned}$	AMDT44
						single-ring aromatic	AMDT4 5	AMDT45
				heterocyclic	AMDT33	saturated heterocyclic	AMDT4 6	AMDT46
						unsaturated heterocyclic	AMDT4 7	AMDT47

2.3 Polyanhydrides

Definition: Polymers whose backbone contains a partial structure, such as the following:

Table 2.3: Classification items for polyanhydrides

No	L1	L2		L3		L4)		ID
3	polyanhydrid es ANH1	unmodified linear	ANH_2	unmodified	ANH_30			ANH_30
				aliphatic	ANH_31	acyclic aliphatic	ANH_41	ANH_41
						alicyclic aliphatic	ANH_42	ANH_42
				aromatic	ANH_32	condensed-ring aromatic	ANH_43	ANH_43
						multiring aromatic	ANH_44	ANH_44
						single-ring aromatic	ANH_45	ANH_45
				heterocyclic	ANH_33	saturated heterocyclic	ANH_46	ANH_46
						unsaturated heterocyclic	ANH_47	ANH_47
		heterocyclic	ANHH2	unmodified	ANHH30			ANHH30
				aliphatic	ANHH31	acyclic aliphatic	$\begin{aligned} & \hline \text { ANHH4 } \\ & 1 \end{aligned}$	ANHH41
						alicyclic aliphatic	$\begin{aligned} & \text { ANHH4 } \\ & 2 \end{aligned}$	ANHH42
				aromatic	ANHH32	condensed-ring aromatic	$\begin{array}{\|l\|} \hline \text { ANHH4 } \\ \hline \end{array}$	ANHH43
						multiring aromatic	$\begin{array}{\|l\|} \hline \text { ANHH4 } \\ \hline 4 \end{array}$	ANHH44
						single-ring aromatic	$\begin{array}{\|l\|l\|} \text { ANHH4 } \\ 5 \end{array}$	ANHH45
				heterocyclic	ANHH33	saturated heterocyclic	$\begin{aligned} & \text { ANHH4 } \\ & 6 \end{aligned}$	ANHH46
						unsaturated heterocyclic	$\begin{aligned} & \text { ANHH4 } \\ & 7 \\ & \hline \end{aligned}$	ANHH47

2.4 Polycarbonates

Definition: Polymers whose backbone contains a partial structure, such as the following:

CAR

Table 2.4: Classification items for polycarbonates

No	L1	L2		L3		L4		ID
4	polycarbonate S CAR1	polycarbonates	CAR_2	unmodified	CAR_30			CAR_30
					CAR_31	acyclic aliphatic	CAR_41	CAR_41
				aliphatic		alicyclic aliphatic	CAR_42	CAR_42
					CAR_32	condensed-ring aromatic	CAR_43	CAR_43
				aromatic		multiring aromatic	CAR_44	CAR_44
						single-ring aromatic	CAR_45	CAR_45
					CAR_33	saturated heterocyclic	CAR_46	CAR_46
						unsaturated heterocyclic	CAR_47	CAR_47

2.5 Polydienes

Definition: Polymers consisting of an aliphatic hydrocarbon group and having more than one double bond $\mathrm{C}=\mathrm{C}$ or triple bond $\mathrm{C} \equiv \mathrm{C}$ on the backbone or side chains (those containing more than one unsaturated aliphatic hydrocarbon group).

- Halogen may be bonded directly to the backbone.
- Polymers whose backbone contains unsaturated aliphatic cyclic hydrocarbon groups are also included here.
- Only those without benzene rings are considered. Fluorenes, for example, are not considered.
- The distinction between _ 30 and $_31$ is made based on the presence or absence of side chains regardless of whether bonded to an acyclic or alicyclic group.

Table 2.5: Classification items for polydienes

No	L1	L2		L3		L4 ID	
5	polydienes	acyclic	DIE_2	unmodified	DIE_30		DIE_30
				pendant group-modified	DIE_31		DIE_31
	DIE1	alicyclic	DIEC2	unmodified	DIEC30		DIEC30
				pendant group-modified	DIEC31		DIEC31

Examples:
A side-chained aliphatic hydrocarbon whose backbone contains
an unsaturated aliphatic cyclic hydrocarbon.
\Rightarrow polydiene (DIEC31)

2.6 Metal-containing polymers

Definition: Polymers whose backbone contain $\mathrm{Sb}, \mathrm{As}, \mathrm{B}, \mathrm{Ge}, \mathrm{Pb}, \mathrm{Hg}, \mathrm{Se}, \mathrm{Te}, \mathrm{Sn}, \mathrm{P}$, or Si .

- Polymers whose backbone contains both one of these metals and hydrocarbons or heterocompounds are considered. Polymers whose backbone consists only of one of these metals are assigned to inorganic polymers.
- Metals other than the eleven kinds given as classification items were not considered for classification.

Table 2.6: Classification items for metal-containing polymers

2.7 Polyesters

Definition: Polymers whose backbone contains a partial structure, such as the following:

ESLH

However, excluded are cases where any of these partial structures is contained in an atomic group characterizing any of the following polymer systems:

Polyurethanes: -CO-O- and the like in $>\mathrm{N}-\mathrm{CO}-\mathrm{O}$
Polyanhydrides: -CO-O- and the like in -CO-O-CO-
Polycarbonates: -CO-O- and the like in -O-CO-O-

Table 2.7: Classification items for polyesters

No	L1	L2		L3		L4		ID
7	polyesters ESL1	unmodified linear	ESL_2	unmodified	ESL_30			ESL_30
				aliphatic	ESL_31	acyclic aliphatic	ESL_41	ESL_41
						alicyclic aliphatic	ESL_42	ESL_42
				aromatic	ESL_32	condensed-ring aromatic	ESL_43	ESL_43
						multiring aromatic	ESL_44	ESL_44
						single-ring aromatic	ESL_45	ESL_45
				heterocyclic	ESL_33	saturated heterocyclic	ESL_46	ESL_46
						unsaturated heterocyclic	ESL_47	ESL_47
		heterocyclic	ESLH2	unmodified	ESLH30			ESLH30
				aliphatic	ESLH31	acyclic aliphatic	ESLH41	ESLH41
						alicyclic aliphatic	ESLH42	ESLH42
				aromatic	ESLH32	condensed-ring aromatic	ESLH43	ESLH43
						multiring aromatic	ESLH44	ESLH44
						single-ring aromatic	ESLH45	ESLH45
				heterocyclic	ESLH33	saturated heterocyclic	ESLH46	ESLH46
						unsaturated heterocyclic	ESLH47	ESLH47

2.8 Polyethers

Definition: Polymers whose backbone contains -O- or a ring system containing -O-.

However, excluded are cases where any of these partial structures is contained in an atomic group characterizing any of the following polymer systems:

Polyesters: -O- and the like in -CO-O-
Polyurethanes: - O - and the like in $>\mathrm{N}-\mathrm{CO}-\mathrm{O}-$
Polyanhydrides: -O- and the like in -CO-O-CO-
Polycarbonates: -O- and the like in -O-CO-O-
Polysulfones: -O- and the like in -SO2-O-

Table 2.8: Classification items for polyethers

No	L1	L2		L3		L4		ID
8	polyethers ETL1	unmodified linear	ETL_2	unmodified	ETL_30			ETL_30
				aliphatic	ETL_31	acyclic aliphatic	ETL_41	ETL_41
						alicyclic aliphatic	ETL_42	ETL_42
				aromatic	ETL_32	condensed-ring aromatic	ETL_43	ETL_43
						multiring aromatic	ETL_44	ETL_44
						single-ring aromatic	ETL_45	ETL_45
				heterocyclic	ETL_33	saturated heterocyclic	ETL_46	ETL_46
						unsaturated heterocyclic	ETL_47	ETL_47
		heterocyclic	ETLH2	unmodified	ETLH30			ETLH30
				aliphatic	ETLH31	acyclic aliphatic	ETLH41	ETLH41
						alicyclic aliphatic	ETLH42	ETLH42
				aromatic	ETLH32	condensed-ring aromatic	ETLH43	ETLH43
						multiring aromatic	ETLH44	ETLH44
						single-ring aromatic	ETLH45	ETLH45
				heterocyclic	ETLH33	saturated heterocyclic	ETLH46	ETLH46
						unsaturated heterocyclic	ETLH47	ETLH47

2.9 Halogenated polymers (halogen-containing polymers)

Definition: Halogen-containing polymers are divided into either halogenated polyolefins or other halogenated polymers.

HAL21:
Polymers (polyolefins) consisting only of a saturated aliphatic hydrocarbon group, at least one hydrogen of the polymer substituted for by halogen

- Polymers in which halogen substitutes for the hydrogen bonded to the backbone.
- Polymers in which halogen substitutes for the hydrogen bonded to a side chain.
- Only - CH2—CHX - in which halogen substitutes for the hydrogen bonded to the backbone are also classified into vinyl polymers (VNL_41).

HAL22:

Polymers in which at least one halogen is bonded directly to the backbone consisting of a straight-chain hydrocarbon group containing heteroatoms or multiple bonds.

Note: Except when classifying halogenated polymers, halogens bonded to the functional group of the backbone are deemed as side chains and classified as $_41$.

Table 2.9: Classification items for halogenated polymers

No	L1	L2		L3		L4		ID
9	halogenated polymers	halogenated polyolefins	HAL21					HAL21
		other halogenated polymers	HAL22					HAL22

[Typical classifications]

	Not an olefin because a heteroatom (O) is contained in the repeating unit. $\Rightarrow \text { HAL_22 }$
	Halogen substitutes for the hydrogen of the olefin. Not assigned to VNL. $\Rightarrow \text { HAL_21 }$
	The F bonded to the benzene ring is not bonded directly to the backbone and is hence not considered for classification. Only F atoms bonded to backbones are considered for classification. $\Rightarrow \text { HAL }^{\prime} 22, \text { ETL_30, 'PBN_- }$
	Not an olefin because a double bond is contained in the backbone. $\Rightarrow \text { HAL22, DIE_31 }$

2.10 Inorganic polymers

Definition: Polymers whose backbone consists of elements other than carbon. Synonymous with "element-organic polymers."

Specific examples include the following partial structures:

polyphosphazene $(-\mathrm{P}=\mathrm{N}-)$
INPN
polysilane (-Si-)
polysilazane (-Si-N-)
polysiloxane (-Si-O-)

- Polymers whose backbone contains hydrocarbons, as well as part of any of these elements, are assigned to metal-containing polymers rather than to inorganic polymers.

Table 2.10: Classification items for inorganic polymers

No	L1	L2				L4		ID	
inorganic polymers		polyphosphazenes	NPN2	unmodified	INPN30			INPN30	
		aliphatic		[NPN 31	acyclic aliphatic	NPN41	NPN41		
		alicyclic aliphatic			NPN42	NPN42			
		aromatic		[NPN32	condensed-ring aromatic	NPN43	NPN43		
		multiring aromatic			NPN44	NPN44			
		single-ring aromatic			NPN45	NPN45			
		heterocyclic		[NPN33	saturated heterocyclic	NPN46	NPN46		
		unsaturated heterocyclic			NPN47	NPN47			
		polysilanes	INSi2	unmodified	INSi30			NSi30	
		aliphatic		INSi31	acyclic aliphatic	NSi41	NSi41		
		alicyclic aliphatic			NSi42	NSi42			
		aromatic		[$\mathrm{NSi32}$	condensed-ring aromatic	NSi43	NSi43		
		multiring aromatic			NSi44	NSi44			
		single-ring aromatic			NSi45	NSi45			
		heterocyclic		INSi33	saturated heterocyclic	NSi46	NSi46		
		unsaturated heterocyclic			NSi47	NSi47			
	IN1		polysilazanes	NSiN2	unmodified	INSiN30			(NSiN30
		aliphatic			[NSiN31	acyclic aliphatic	NSiN41	NSiN41	
						alicyclic aliphatic	NSiN42	NSiN42	
		aromatic			INSiN32	condensed-ring aromatic	NSiN43	NSiN43	
						multiring aromatic	NSiN44	NSiN44	
						single-ring aromatic	NSiN45	NSiN45	
		heterocyclic			[NSiN33	saturated heterocyclic	NSiN46	NSiN46	
						unsaturated heterocyclic	NSiN47	(NSiN47	
		polysiloxanes	${ }^{\text {NSiO2 }}$	unmodified	INSiO30			NSiO30	
				aliphatic	INSiO31	acyclic aliphatic	NSiO41	NSiO41	
						alicyclic aliphatic	NSiO42	NSiO42	
				aromatic	[NSiO 32	condensed-ring aromatic	NSiO43	NSiO43	
						multiring aromatic	NSiO44	NSiO44	
						single-ring aromatic	NSiO45	NSiO45	
				heterocyclic	[$\mathrm{NSiO33}$	saturated heterocyclic	NSiO46	NSiO46	

2.11 Polyimides

Definition: Polymers whose backbone contains a partial structure, such as the following:

IMD
IMDH

IMDT

Table 2.11: Classification items for polyimides

2.12 Polyimines

Definition: Polymers whose backbone contains a partial structure, such as the following, containing $\mathrm{C}-\mathrm{N}=$:

However, excluded are cases where any of these partial structures is contained in an atomic group characterizing any of the following polymer systems:

Polyamides: $-\mathrm{N}<$ and the like in CO-N<
Polyurethanes: $-\mathrm{N}<$ and the like in $>\mathrm{N}-\mathrm{CO}-\mathrm{O}-$
Polyureas: $-\mathrm{N}<$ and the like in $>\mathrm{N}-\mathrm{CO}-\mathrm{N}<$
Polyimides: - $\mathrm{N}<$ and the like in -CO-N-CO-
Polysulfones/sulfoxides/sulfonates/sulfonamides: - $\mathrm{N}<$ and the like in -SO2-N<

Table 2.12: Classification items for polyimines

No	L1	L2				L4		ID
	L1	L2		L3	L4	ID	No	L1
				aliphatic	[MN_31	acyclic aliphatic	MN_41	MN_41
						alicyclic aliphatic	MN_42	MN_42
		unmodified linear		aromatic	[MN_32	condensed-ring aromatic	MN_43	IMN_43
						multiring aromatic	MN_44	IMN_44
						single-ring aromatic	MN_45	IMN_45
				heterocyclic	[MN_33	saturated heterocyclic	MN_46	IMN_46
						unsaturated heterocyclic	MN_47	IMN_47
	polyimines IMN1	heterocyclic polyimines	MNH2	unmodified	IMNH30			M MH 30
				aliphatic	[MNH31	acyclic aliphatic	MNH41	IMNH41
						alicyclic aliphatic	MNH42	MNH42
				aromatic	[MNH32	condensed-ring aromatic	MNH43	MNH43
						multiring aromatic	MNH44	MNH44
						single-ring aromatic	MNH45	MNH45
				heterocyclic	[MNH33	saturated heterocyclic	MNH46	IMNH46
						unsaturated heterocyclic	MNH47	MNH47

2.13 Polyketones

Definition: Polymers whose backbone contains a partial structure, such as the following:

KTN

However, excluded are cases where any of these partial structures is contained in an atomic group characterizing any of the following polymer systems:

Polyesters: -CO- and the like in -CO-O-
Polyamides: -CO- and the like in -CO-N $<$
Polyurethanes: - CO- and the like in $>\mathrm{N}-\mathrm{CO}-\mathrm{O}-$
Polyureas: -CO- and the like in $>\mathrm{N}-\mathrm{CO}-\mathrm{N}<$
Polyimides: -CO- and the like in -CO-N-CO-
Polyanhydrides: -CO- and the like in -CO-O-CO-
Polycarbonates: -CO- and the like in -O-CO-O-

Table 2.13: Classification items for polyketones

No	L1	L2		L3		L4		ID
1	polyketones KTN1	unmodified linear	KTN_2	unmodified	KTN_30			KTN_30
				aliphatic	KTN_31	acyclic aliphatic	KTN_41	KTN_41
						alicyclic aliphatic	KTN_42	KTN_42
				aromatic	KTN_32	condensed-ring aromatic	KTN_43	KTN_43
						multiring aromatic	KTN_44	KTN_44
						single-ring aromatic	KTN_45	KTN_45
				heterocyclic	KTN_33	saturated heterocyclic	KTN_46	KTN_46
						unsaturated heterocyclic	KTN_47	KTN_47
		cyclic	KTNC2	unmodified	KTNC30			KTNC30
				aliphatic	KTNC31	acyclic aliphatic	KTNC41	KTNC41
						alicyclic aliphatic	KTNC42	KTNC42
				aromatic	KTNC32	condensed-ring aromatic	KTNC43	KTNC43
						multiring aromatic	KTNC44	KTNC44
						single-ring aromatic	KTNC45	KTNC45
				heterocyclic	KTNC33	saturated heterocyclic	KTNC46	KTNC46
						unsaturated heterocyclic	KTNC47	KTNC47

2.14 Polyolefins

Definition: Polymers consisting only of a saturated aliphatic hydrocarbon group (polymers containing no atoms other than carbon and hydrogen).

Classification at L2 is made based on whether the backbone is a straight-chain or ring backbone, for each case of which further classification follows based on the presence or absence of side chains.

- Polymers containing unsaturated carbon bonds are not included here.
- A backbone containing both straight-chain and ring olefins is deemed as a ring backbone.

Table 2.14: Classification items for polyolefins

No	L1	L2		L3		L4 ID	
14	polyolefins OLF1	acyclic	OLF_2	unmodified	OLF_30		OLF_30
				pendant group-modified	OLF_31		OLF_31
		alicyclic	OLFC2	unmodified	OLFC30		OLFC30
				pendant group-modified	OLFC31		OLFC31

[Example]

	Assigned to alicyclic if containing both
straight-chain and ring olefins.	

2.15 Polyphenylenes

Definition: Polymers whose backbone contains a phenylene group
More specifically, polymers whose backbone contains 1,4-phenylene, 1,3-phenylene, or 1,2-phenylene.

- Polymers whose backbone contains atoms other than phenylene groups are also within the scope.

Table 2.15: Classification items for polyphenylenes

No	L1	L2		L3		L4		ID
1.	polyphenylenes PHN1	polyphenylene	PHN_2	unmodified	PHN_30			PHN_30
					PHN_31	acyclic aliphatic	PHN_41	PHN_41
						alicyclic aliphatic	PHN_42	PHN_42
					PHN_32	condensed-ring aromatic	PHN_43	PHN_43
				aromatic		multiring aromatic	PHN_44	PHN_44
						single-ring aromatic	PHN_45	PHN_45
				etero	PHN_33	saturated heterocyclic	PHN_46	PHN_46
				terocy		unsaturated heterocyclic	PHN_47	PHN_47

2.16 Poly(phosphane oxide)/poly(phosphane sulfide)

Definition: Polymers whose backbone contains at least one of the following groups containing straight-chain-P—:

PHSS

Table 2.16: Classification items for poly(phosphane oxide)/poly(phosphane sulfide)

No	L1	L2		L3		L4		ID
16	aliphatic poly(phospha ne oxide) /poly(phospha ne sulfide) PHS1	poly(phosphane oxide)	PHS_2	unmodified	PHS_30			PHS_30
				aliphatic	PHS_31	acyclic aliphatic	PHS_41	PHS_41
						alicyclic aliphatic	PHS_42	PHS_42
				aromatic	PHS_32	condensed-ring aromatic	PHS_43	PHS_43
						multiring aromatic	PHS_44	PHS_44
						single-ring aromatic	PHS_45	PHS_45
				heterocyclic	PHS_33	saturated heterocyclic	PHS_46	PHS_46
						unsaturated heterocyclic	PHS_47	PHS_47
		poly(phosphane sulfide)	PHSS2	unmodified	PHSS30			PHSS30
				aliphatic	PHSS31	acyclic aliphatic	PHSS41	PHSS41
						alicyclic aliphatic	PHSS42	PHSS42
				aromatic	PHSS32	condensed-ring aromatic	PHSS43	PHSS43
						multiring aromatic	PHSS44	PHSS44
						single-ring aromatic	PHSS45	PHSS45
				heterocyclic	PHSS33	saturated heterocyclic	PHSS46	PHSS46
						unsaturated heterocyclic	PHSS47	PHSS47

2.17 Polystyrenes

Definition: Polymers whose backbone consists of a saturated aliphatic hydrocarbon group with aromatic rings bonded to at least one backbone carbon.

- No halogen is bonded to the backbone.

- No heteroring is included.
- Polymers classified into polystyrenes are also classified into vinyl polymers at the same time.

Table 2.17: Classification items for polystyrenes

No	L1	L2		L3		L4		ID
17	polystyrenes STY1	polystyrenes	STY_2	unmodified	STY_30			STY_30
				aliphatic	STY_31	acyclic aliphatic	STY_41	STY_41
						alicyclic aliphatic	STY_42	STY_42
				aromatic	STY_32	condensed-ring aromatic	STY_43	STY_43
						multiring aromatic	STY_44	STY_44
						single-ring aromatic	STY_45	STY_45
				heterocyclic	STY_33	saturated heterocyclic	STY_46	STY_46
						unsaturated heterocyclic	STY_47	STY_47

Examples)

PID:P020153 CU formula:C8H5F3	Not assigned to STY because halogens are bonded to the backbone.
1. poly[(2-styrylpyridine)-alt-(2-vinylpyridine)] PID:P020194 $\mathbf{C U}$ formula:C20H18N2 2 samples	Because the backbone is a straight-chain hydrocarbon group, the functional group having a side chain containing a benzene ring is assignable to STY.

2.18 Polysulfides/polysulfones/polysulfoxides

Definition: Polymers whose backbone contains at least one of the following groups containing $-\mathrm{S}-$:

0
SULFI
SULFIH
SULFO

However, excluded are cases where any of these partial structures is contained in an atomic group characterizing any of the following polymer systems:

Thioesters: -S- and the like in -CO-S-
Thiourethanes: -S- and the like in $>\mathrm{N}-\mathrm{CO}-\mathrm{S}-$
Thioanhydrides: -S- and the like in -CO-S-CO-
Thiocarbonates: -S- and the like in -O-CO-S-

- The S at either end of the Si in the backbone is deemed as that of polysulfides.
- Polymers containing the partial structures shown below are classified into polysulfides and polyimides.

[Example]
PID:P070703 CU formula:C20H10N2O

\Rightarrow IMNH30, SULFIH30, ETL_30, PHN_30

Table 2.18: Classification items for polysulfides/polysulfones/polysulfoxides

2．19 Polysulfates／polysulfonates

Definition：Polymers whose backbone contains at least one of the following groups containing － $\mathrm{S}-\mathrm{O}$－：

SLFA
SLFO

Table 2．19：Classification items for polysulfates／polysulfonates

No	L1	L2		L3		L4		ID
19	polysulfates ／polysulfonate s （主鎖に	polysulfates	SLFA2	unmodified	SLFA30			SLFA30
				aliphatic	SLFA31	acyclic aliphatic	SLFA41	SLFA41
						alicyclic aliphatic	SLFA42	SLFA42
				aromatic	SLFA32	condensed－ring aromatic	SLFA43	SLFA43
						multiring aromatic	SLFA44	SLFA44
						single－ring aromatic	SLFA45	SLFA45
				heterocyclic	SLFA33	saturated heterocyclic	SLFA46	SLFA46
						unsaturated heterocyclic	SLFA47	SLFA47
	－S－O－を含む）	polysulfonates	SLFO2	unmodified	SLFO30			SLFO30
				aliphatic	SLFO31	acyclic aliphatic	SLFO41	SLFO41
	SLF1					alicyclic aliphatic	SLFO42	SLFO42
				aromatic	SLFO32	condensed－ring aromatic	SLFO43	SLFO43
						multiring aromatic	SLFO44	SLFO44
						single－ring aromatic	SLFO45	SLFO45
				heterocyclic	SLFO33	saturated heterocyclic	SLFO46	SLFO46
						unsaturated heterocyclic	SLFO47	SLFO47

2.20 Polysulfonamides

Definition: Polymers whose backbone contains a partial structure, such as the following:

Table 2.20: Classification items for polysulfonamides

No	L1	L2		L3		L4		ID
20	polysulfonami des SUA1	polysulfonamides	SUA_2	unmodified	SUA_30			SUA_30
					SUA_31	acyclic aliphatic	SUA_41	SUA_41
				aliphatic		alicyclic aliphatic	SUA_42	SUA_42
					SUA_32	condensed-ring aromatic	SUA_43	SUA_43
				aromatic		multiring aromatic	SUA_44	SUA_44
						single-ring aromatic	SUA_45	SUA_45
				h	SUA_33	saturated heterocyclic	SUA_46	SUA_46
						unsaturated heterocyclic	SUA_47	SUA_47

2.21 Polythioketones/polythioesters/polythiocarbonates

Definition: Polymers whose backbone contains any of the following partial structures containing -$\mathrm{C}(=\mathrm{S})-$ or $-\mathrm{C}(=\mathrm{S})-\mathrm{O}-:$

 TCA
TKN
TES

The following structural formulae are also deemed as variants of TCA:

However, excluded are cases where any of these partial structures is contained in an atomic group characterizing any of the following polymer systems:

Polythioamides: -CS- and the like in -CS-N<
Polythiourethanes: -CS- and the like in $>\mathrm{N}-\mathrm{CS}-\mathrm{O}-$
Polythioureas: -CS- and the like in $>\mathrm{N}-\mathrm{CS}-\mathrm{N}<$
Polythioimides: -CS- and the like in -CS-N-CS-
Polythioanhydrides: -CS- and the like in -CS-O-CS-

Table 2．21：Classification items for polythioketones／polythioesters／polythiocarbonates

No	L1	L2		L3		L4		ID
21	polythioketon es ／polythioester s ／polythiocarb onates （少なくとも一 つの O が Sと置換してい る） T1	polythioketones	TKN2	unmodified	TKN30			TKN30
				aliphatic	TKN31	acyclic aliphatic	TKN41	TKN41
						alicyclic aliphatic	TKN42	TKN42
				aromatic	TKN32	condensed－ring aromatic	TKN43	TKN43
						multiring aromatic	TKN44	TKN44
						single－ring aromatic	TKN45	TKN45
				heterocyclic	TKN33	saturated heterocyclic	TKN46	TKN46
						unsaturated heterocyclic	TKN47	TKN47
		polythioesters	TES2	unmodified	TES30			TES30
				aliphatic	TES31	acyclic aliphatic	TES41	TES41
						alicyclic aliphatic	TES42	TES42
				aromatic	TES32	condensed－ring aromatic	TES43	TES43
						multiring aromatic	TES44	TES44
						single－ring aromatic	TES45	TES45
				heterocyclic	TES33	saturated heterocyclic	TES46	TES46
						unsaturated heterocyclic	TES47	TES47
		polythiocarbonates	TCA2	unmodified	TCA30			TCA30
				aliphatic	TCA31	acyclic aliphatic	TCA41	TCA41
						alicyclic aliphatic	TCA42	TCA42
				aromatic	TCA32	condensed－ring aromatic	TCA43	TCA43
						multiring aromatic	TCA44	TCA44
						single－ring aromatic	TCA45	TCA45
				heterocyclic	TCA33	saturated heterocyclic	TCA46	TCA46
						unsaturated heterocyclic	TCA47	TCA47

2.22 Polythioamide

Definition: Polymers whose backbone contains a partial structure, such as the following:

S

TAMD

TADH

S

TADT

However, excluded are cases where any of these partial structures is contained in an atomic group characterizing any of the following polymer systems:

Polythiourethanes: >N-CS- and the like in >N-CS-O-
Polythioureas: >N-CS- and the like in $>\mathrm{N}-\mathrm{CS}-\mathrm{N}<$
Polythioimides: >N-CS- and the like in -CS-N-CS-

Table 2.22: Classification items for polythioamide

No	L1	L2		L3		L4		ID
22	polythioamide TA1	unmodified linear	TAMD2	unmodified	TAMD30			TAMD30
				aliphatic	TAMD31	acyclic aliphatic	$\begin{array}{\|l\|} \hline \text { TAMD4 } \\ \hline 1 \\ \hline \end{array}$	TAMD41
						alicyclic aliphatic	$\begin{array}{\|l} \hline \text { TAMD4 } \\ \hline 2 \end{array}$	TAMD42
				aromatic	TAMD32	condensed-ring aromatic	$\begin{array}{\|l\|} \hline \text { TAMD4 } \\ \hline 3 \\ \hline \end{array}$	TAMD43
						multiring aromatic	$\begin{array}{\|l} \text { TAMD4 } \\ 4 \end{array}$	TAMD44
						single-ring aromatic	$\begin{array}{\|l\|} \hline \text { TAMD4 } \\ \hline 5 \\ \hline \end{array}$	TAMD45
				heterocyclic	TAMD33	saturated heterocyclic	$\begin{array}{\|l} \text { TAMD4 } \\ 6 \\ \hline \end{array}$	TAMD46
						unsaturated heterocyclic	$\begin{array}{\|l} \hline \text { TAMD4 } \\ 7 \\ \hline \end{array}$	TAMD47
		heterocyclic	TADH2	unmodified	TADH30			TADH30
				aliphatic	TADH31	acyclic aliphatic	$\begin{aligned} & \text { TADH4 } \\ & 1 \end{aligned}$	TADH41
						alicyclic aliphatic	$\begin{array}{\|l} \text { TADH4 } \\ 2 \\ \hline \end{array}$	TADH42
				aromatic	TADH32	condensed-ring aromatic	$\begin{aligned} & \text { TADH4 } \\ & 3 \end{aligned}$	TADH43
						multiring aromatic	$\begin{array}{\|l} \text { TADH4 } \\ \hline \end{array}$	TADH44
						single-ring aromatic	$\begin{aligned} & \text { TADH4 } \\ & 5 \\ & \hline \end{aligned}$	TADH45
				heterocyclic	TADH33	saturated heterocyclic	$\begin{aligned} & \text { TADH4 } \\ & \hline 6 \end{aligned}$	TADH46
						unsaturated heterocyclic	$\begin{aligned} & \text { TADH4 } \\ & 7 \end{aligned}$	TADH47
		partially heterocyclic	TADT2	unmodified	TADT30			TADT30
				aliphatic	TADT31	acyclic aliphatic	TADT41	TADT41
						alicyclic aliphatic	TADT42	TADT42
				aromatic	TADT32	condensed-ring aromatic	TADT43	TADT43
						multiring aromatic	TADT44	TADT44
						single-ring aromatic	TADT45	TADT45
				heterocyclic	TADT33	saturated heterocyclic	TADT46	TADT46
						unsaturated heterocyclic	TADT47	TADT47

2.23 Polythioureas/polythiourethanes

Definition: Polymers whose backbone contains a partial structure, such as the following:

S

S

TURA

Table 2.23: Classification items for polythioureas/polythiourethanes

No	L1	L2				L4		ID
2.	polythioureas /polythiouret hanes TUR1	unmodified linear polythioureas	TURA2	unmodified	TURA30			TURA30
				aliphatic	TURA31	acyclic aliphatic	TURA41	TURA41
						alicyclic aliphatic	TURA42	TURA42
				aromatic	TURA32	condensed-ring aromatic	TURA43	TURA43
						multiring aromatic	TURA44	TURA44
						single-ring aromatic	TURA45	TURA45
				heterocyclic	TURA33	saturated heterocyclic	TURA46	TURA46
						unsaturated heterocyclic	TURA47	TURA47
		Heterocyclic polythioureas	TURAH2	unmodified	TURAH30			TURAH30
				aliphatic	TURAH31	acyclic aliphatic	TURAH41	TURAH41
						alicyclic aliphatic	TURAH42	TURAH42
				aromatic	TURAH32	condensed-ring aromatic	TURAH43	TURAH43
						multiring aromatic	TURAH44	TURAH44
						single-ring aromatic	TURAH45	TURAH45
				heterocyclic	TURAH33	saturated heterocyclic	TURAH46	TURAH46
						unsaturated heterocyclic	TURAH47	TURAH47
		unmodified linear polythiourethane \mathbf{S}	TURN2	unmodified	TURN30			TURN30
				aliphatic	TURN31	acyclic aliphatic	TURN41	TURN41
						alicyclic aliphatic	TURN42	TURN42
				aromatic	TURN32	condensed-ring aromatic	TURN43	TURN43
						multiring aromatic	TURN44	TURN44
						single-ring aromatic	TURN45	TURN45
				heterocyclic	TURN33	Heterocyclic saturated	TURN46	TURN46
						unsaturated heterocyclic	TURN47	TURN47
		heterocyclic polythiourethane s	TURNH2	unmodified	TURNH30			TURNH30
				aliphatic	TURNH31	acyclic aliphatic	TURNH41	TURNH41
						alicyclic aliphatic	TURNH42	TURNH42
				aromatic	TURNH32	condensed-ring aromatic	TURNH43	TURNH43
						multiring aromatic	TURNH44	TURNH44
						single-ring aromatic	TURNH45	TURNH45
				heterocyclic	TURNH33	saturated heterocyclic	TURNH46	TURNH46
						unsaturated heterocyclic	TURNH47	TURNH47

2.24 Polythioanhydrides

Definition: Polymers whose backbone contains a partial structure, such as the following, with at least one O of the anhydride group substituted for by S :

Table 2.24: Classification items for polythioanhydrides

No	L1	L2		L3		L4		ID
24	polythioanhy drides TAN1	unmodified linear	TAN_2	unmodified	TAN_30			TAN_30
				aliphatic	TAN_31	acyclic aliphatic	TAN_41	TAN_41
						alicyclic aliphatic	TAN_42	TAN_42
				aromatic	TAN_32	condensed-ring aromatic	TAN_43	TAN_43
						multiring aromatic	TAN_44	TAN_44
						single-ring aromatic	TAN_45	TAN_45
				heterocyclic	TAN_33	saturated heterocyclic	TAN_46	TAN_46
						unsaturated heterocyclic	TAN_47	TAN_47
		heterocyclic	TANH2	unmodified	TANH30			TANH30
				aliphatic	TANH31	acyclic aliphatic	TANH4 1	TANH41
						alicyclic aliphatic	TANH4 2	TANH42
				aromatic	TANH32	condensed-ring aromatic	TANH4 3	TANH43
						multiring aromatic	TANH4 4	TANH44
						single-ring aromatic	TANH4 5	TANH45
				heterocyclic	TANH33	saturated heterocyclic	TANH4 6	TANH46
						unsaturated heterocyclic	TANH4 7	TANH47

2.25 Polythioimides

Definition: Polymers whose backbone contains a partial structure, such as the following:

TID
TIDH

```
TIDT
```

Table 2.25: Classification items for polythioimides

No	L1	L2				L4		ID
2	polythioimides TID1	unmodified linear	TID_2	unmodified	TID_30			TID_30
				aliphatic	TID_31	acyclic aliphatic	TID_41	TID_41
						alicyclic aliphatic	TID_42	TID_42
				aromatic	TID_32	condensed-ring aromatic	TID_43	TID_43
						multiring aromatic	TID_44	TID_44
						single-ring aromatic	TID_45	TID_45
				heterocyclic	TID_33	saturated heterocyclic	TID_46	TID_46
						unsaturated heterocyclic	TID_47	TID_47
		heterocyclic	TIDH2	unmodified	TIDH30			TIDH30
				aliphatic	TIDH31	acyclic aliphatic	TIDH41	TIDH41
						alicyclic aliphatic	TIDH42	TIDH42
				aromatic	TIDH32	condensed-ring aromatic	TIDH43	TIDH43
						multiring aromatic	TIDH44	TIDH44
						single-ring aromatic	TIDH45	TIDH45
				heterocyclic	TIDH33	saturated heterocyclic	TIDH46	TIDH46
						unsaturated heterocyclic	TIDH47	TIDH47
		partially heterocyclic	TIDT2	unmodified	TIDT30			TIDT30
				aliphatic	TIDT31	acyclic aliphatic	TIDT41	TIDT41
						alicyclic aliphatic	TIDT42	TIDT42
				aromatic	TIDT32	condensed-ring aromatic	TIDT43	TIDT43
						multiring aromatic	TIDT44	TIDT44
						single-ring aromatic	TIDT45	TIDT45
				heterocyclic	TIDT33	saturated heterocyclic	TIDT46	TIDT46

2.26 Polyureas/polyurethanes

Definition: Polymers whose backbone contains a partial structure, such as the following:

URAH

 URN

Table 2.26: Classification items for polyureas/polyurethanes

2．27 Vinyl polymers

Definition：Polymers whose backbone consists only of an aliphatic hydrocarbon group with side chains containing aromatic rings，heteroatoms，or heteroatom－containing groups．

However，halogen－containing ones are limited to ones of the following form while ones taking any other form of bonding are classified only into halogenated polymers：

$$
\mathrm{X}=\mathrm{F}, \mathrm{Cl}, \mathrm{Br}, \mathrm{I}
$$

－The number of backbone carbon atoms in constitutional units（CU）is not limited．
－Polymers whose backbone contains a double bond $\mathrm{C}=\mathrm{C}$ or triple bond $\mathrm{C} \equiv \mathrm{C}$ are also classified hereto．
－Polymers classified into polystyrenes and polyacrylics are also classified into vinyl polymers at the same time．
－Vinyl polymers are not classified at the same time as polyolefins and polydienes．

Table 2．27：Classification items for vinyl polymers

No	（L1 ）28 項目	（L2）（75 項目）		（L3） 224 項目）		（L4）項目（385 項目）		ID（469 項目
2	vinyl polymers VNL1	vinyl polymers	VNL＿2	aliphatic	VNL＿31	acyclic aliphatic	VNL＿41	VNL＿41
						alicyclic aliphatic	VNL＿42	VNL＿42
				aromatic	VNL＿32	condensed－ring aromatic	VNL＿43	VNL＿43
						multiring aromatic	VNL＿44	VNL＿44
						single－ring aromatic	VNL＿45	VNL＿45
				heterocyclic	VNL＿33	saturated heterocyclic	VNL＿46	VNL＿46
						unsaturated heterocyclic	VNL＿47	VNL＿47

［Typical classifications］

	\Rightarrow VNL＿41
	\Rightarrow VNL＿41，VNL＿45，ACR＿41，STY＿30
	\Rightarrow VNL＿41

$\underbrace{-\mathrm{CH}_{2}-}_{\substack{\mathrm{CH}_{2} \mathrm{SCH}_{2} \mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CH}_{3} \\ \mathrm{CH}_{2} \mathrm{CH}_{3}}}$	$\Rightarrow \mathrm{VNL}_{-} 41$

2.28. Condensed-ring aromatic hydrocarbon (COND)

Definition: Polymers whose backbone contains a condensed polycyclic aromatic hydrocarbon.
Condensed polycyclic aromatic hydrocarbons refer to condensed polycyclic hydrocarbons containing at least one benzene ring, and azulene rings (with seven- and five-membered rings condensed together).

Table 2.28: Classification items for condensed-ring aromatic hydrocarbon

No	L1	L2		L3		L4		ID
28	Condensed-ring aromatic hydrocarbon COND1	Condensed-ring aromatic hydrocarbon	COND_2	unmodified	COND_30			COND_30
				aliphatic	COND_31	acyclic aliphatic	COND_41	COND_41
						alicyclic aliphatic	COND_42	COND_42
				aromatic	COND_32	condensed-ring aromatic	COND_43	COND_43
						multiring aromatic	COND_44	COND_44
						single-ring aromatic	COND_45	COND_45
				heterocyclic	COND_33	saturated heterocyclic	COND_46	COND_46
						unsaturated heterocyclic	COND_47	COND_47

Typical classifications:

PID:P522064 CU formula:C14H8	COND_30
	COND_45
	COND_30

2.29 Other polymers

Definition: Polymers not belonging to Classification Items 01 to 28 .

Table 2.29: Classification items for other polymers

No	L1	L2	L3		L4		
	other polymers OTR1						ID

